The assessment was conducted following a rigorous methodology and taking into consideration many thousands of studies that have become available since EFSA’s previous assessment in 2016, including new scientific evidence and data on nanoparticles.
The manufacturing process of titanium dioxide typically involves mining ilmenite, rutile, or anatase from natural sources, followed by conversion into TiO2 through various chemical processes. The resulting TiO2 can then be further processed to achieve different particle sizes and coatings that optimize its performance in specific applications. For instance, TiO2 used in sunscreens is often coated to enhance its effectiveness in blocking UV rays without causing skin irritation. One of the key advantages of P25 TiO2 is its ability to provide excellent UV protection. It effectively absorbs ultraviolet light, which can cause damage to many materials and products over time. By incorporating P25 TiO2 into coatings, plastics, and other materials, manufacturers can enhance their products' durability and longevity by protecting them from harmful UV radiation.Pigmentary TiO2 particles are approximately 200-350nm in dimension and this form accounts for 98 percent of total production. It is used mainly for light scattering and surface opacity applications. It is used as a base for various colour paints or as a standalone ‘brilliant’ white.
While the anatase titanium dioxide market is robust, it faces challenges such as regulatory compliance and environmental concerns related to extraction and processing. Manufacturers are increasingly adopting sustainable practices, focusing on recycling materials and minimizing waste in production processes. Innovations in nanotechnology are also leading to the development of more efficient and eco-friendly synthesis methods that can further enhance the properties of anatase TiO2.
No. EFSA’s role was limited to evaluating the risks linked to titanium dioxide as a food additive. This included an assessment of relevant scientific information on TiO2, its potential toxicity, and estimates of human dietary exposure. Any legislative or regulatory decisions on the authorisations of food additives are the responsibility of the risk managers (i.e. European Commission and Member States).
Why all of a sudden is there so much interest in the safety of Titanium Dioxide?
Researchers from France and Luxembourg gave E171 (the much more food friendly name for Titanium Dioxide) in Europe and the United States, to lab rats in their drinking water for 100 days.
Of those rats, 40 per cent of the exposed rodents developed “preneoplastic lesions” or precancerous growths. The Titanium Dioxide also inhibited the immune systems of the rats and “accelerated” the growth of the lesions. France’s INRA agricultural research institute, which took part in the study, said in a statement.“These results demonstrate a role in initiating and promoting the early stages of colorectal cancer formation,” though it said no conclusion could be drawn about later phases of cancer, or of any danger to humans……….(not till they test it on us!!)
The results of the study were published in the Nature journal Scientific Reports.
If you want to avoid titanium dioxide, Stoiber and Faber urge consumers to try and avoid processed foods as best as you can.
Venator Materials, with roots in Huntsman International, focuses on both titanium dioxide and performance additivesFor a substance that is relatively unknown to the public, it’s amazing how many everyday products TiO2 can be found in. Because of its many varied properties, our skin, cities, cars, homes, food and environment are made brighter, safer, more resilient and cleaner by TiO2. With a legacy of 100 years of safe commercial use, TiO2 is only going to become more vital as our environment faces greater challenges from a growing population.
6.0-8.0
Used for coloring paint, ink, rubber, etc. Inorganic white pigments are widely used as white pigments in plastics such as polyolefin, vinyl resin, ABS resin, polystyrene, polycarbonate, nylon and polyformaldehyde, as well as paints and inks. It is less effective in polyurethane and amino resins, and less suitable in fluoroplastics. It is also used for coloring rubber products, papermaking, varnished cloth, oilcloth, leather, watercolor paints, paper, enamel, etc. Used as an adhesive in the production of electric beads.
Another top titanium dioxide manufacturer has earned a reputation for its focus on sustainability and environmental responsibility